Respiratory Emergency in Hospitalized patient with Intrathoracic Malignancy at H. Adam Malik General Hospital

Concordance of TST and QFT-Plus, Sensitivity and Specificity of TST and QFT-Plus in Detection of LTBI in MDR TB Contact

Analysis of Comorbidity and Its Association with Disease Severity and Mortality Rate in Hospitalized COVID-19 Patients

Correlation between N-Acetyltransferase 2 (NAT2) Polymorphism Genotype with Plasma Isoniazid (INH) Concentration in MDR TB Patients Receiving Short Regimen in West Sumatera

Impact of Pulmonary Rehabilitation on Hospitalization Duration, IL-6 Levels, and Respiratory Muscle Power in Hospitalized Community-Acquired Pneumonia Patients

The Effect of Inspiratory Breathing Muscle Exercise Using Respirometer on Changes in Lung Function and Dyspnea Severity in Tuberculosis Pleurisy Patients

Risk Factors of Prolonged QTc Interval in Patients with Drugs-Resistant Tuberculosis

The Correlations Between Measurement of Lung Diffusing Capacity for Carbon Monoxide and The Severity Group of Asthma Patients in Persahabatan Hospital Jakarta

Safety of Favipiravir for Treatment of COVID-19: Latest Systematic Review

The Efficacy of Remdesivir in Reducing SARS-CoV-2 Viral Load and Its Safety on COVID-19 Patients: A Systematic Review
Editorial Advisory Board
M. Arifin Nawas
Faisal Yunus
Agus Dwi Susanto

Editorial-in-Chief
Fanny Fachrucha

Editorial Board
Feni Fitriani Taufik
Noni Novisari Soeroso
Tutik Kusmiati
A. Farhan Raharjo
Ginanjar Arum Desianti
Irandi Putra Pratomo
Jamal Zaini
Mia Elhidsi

International Editorial Board
Guido Vagheggini
Mayank Vats
Motoyasu Kato
Ira Paula Wardono

Secretariat
Shalzaviera Azniatinesa
Suwondo
SST : Surat Keputusan Menteri Penerangan RI

Editorial Office
PDPI Jl. Cipinang Bunder, No. 19, Cipinang Pulo Gadung
Jakarta Timur 13240 Telp: 02122474845
Email : editor@jurnalrespirologi.org
Website : http://www.jurnalrespirologi.org

Publisher
The Indonesia Society of Respirology (ISR)
Published every 3 months (January, April, July & October)

Jurnal Respirologi Indonesia
2nd Rank Accreditation
According to the Decree of the Minister of Research and Technology/Head of the National Research and Innovation Agency of the Republic of Indonesia Number: 200/M/KPT/2020
December 23, 2020
TABLE OF CONTENT

Original Article

Respiratory Emergency in Hospitalized patient with Intrathoracic Malignancy at H. Adam Malik General Hospital
 Elizabeth Napitupulu, Noni Novisari Soeroso, Setia Putra Tarigan, Putri Eyanoer 1

Concordance of TST and QFT-Plus, Sensitivity and Specificity of TST and QFT-Plus in Detection of LTBI in MDR TB Contact
 Rullyano Hardian, Reviono, Harsini, Yusup Subagio Sutanto 9

Analysis of Comorbidity and Its Association with Disease Severity and Mortality Rate in Hospitalized COVID-19 Patients
 Anthony Christanto, Aditya Sri Listyoko, Ngakan Putu Parsama Putra 18

Correlation between N-Acetyltransferase 2 (NAT2) Polymorphism Genotype with Plasma Isoniazid (INH) Concentration in MDR TB Patients Receiving Short Regimen in West Sumatera
 Mega Senja, Masrul Basyar, Yessy Susanty Sabri, Afriani 26

Impact of Pulmonary Rehabilitation on Hospitalization Duration, IL-6 Levels, and Respiratory Muscle Power in Hospitalized Community-Acquired Pneumonia Patients
 Santony, Iin Noor Chozin, Teguh Rahayu Sartono, Rahmad, Harun Al Rasyid 34

The Effect of Inspiratory Breathing Muscle Exercise Using Respirometer on Changes in Lung Function and Dyspnea Severity in Tuberculosis Pleurisy Patients
 Irmaini, Herry Priyanto, Dewi Behtri Yanifitri 43

Risk Factors of Prolonged QTc Interval in Patients with Drugs-Resistant Tuberculosis
 Andika Pradana, Katharine, Parluhutan Siagian 52

The Correlations Between Measurement of Lung Diffusing Capacity for Carbon Monoxide and The Severity Group of Asthma Patients in Persahabatan Hospital Jakarta
 Bulkis Natsir, Faisal Yunus, Triya Damayanti 58

Literature Review

Safety of Favipiravir for Treatment of COVID-19: Latest Systematic Review
 Rizki Oktarini, Anna Rozaliyani, Ratika Rahmasari, Muhammad Alkaif, Rani Sauriasari 67

The Efficacy of Remdesivir in Reducing SARS-CoV-2 Viral Load and Its Safety on COVID-19 Patients: A Systematic Review
 Afifah Fauziyyah, Ratika Rahmasari, Rani Sauriasari 76
Safety of Favipiravir for Treatment of COVID-19: Latest Systematic Review

Rizki Oktarini1, Anna Rozaliyan2, Ratika Rahmasari1, Muhammad Alkaff3, Rani Sauriasari1

1Faculty of Pharmacy, Universitas Indonesia, Depok
2Parasitology Department, Faculty of Medicine, Universitas Indonesia, Depok
3Department of Internal Medicine, Persahabatan Central General Hospital, Jakarta

Abstract

Background: Adverse event studies of favipiravir used to treat COVID-19 have been ongoing since it was established as a treatment option. A better understanding of the side effects of favipiravir from recent studies is important for developing and assessing the introduction of effective treatments for COVID-19.

Results: Twelve studies consisting of eight research studies and four case reports were reviewed. The most common side effects were diarrhea, elevated liver enzyme levels, and hyperuricemia. None of which were significantly different from the comparison. Currently, various adverse event was reported in case reports such as drug fever, acute generalized exanthematous pustulosis (AGEP), and transient increase in viral load. The side effects mostly will recover after the treatment is discontinued.

Conclusion: The use of favipiravir to treat COVID-19 causes dose-related side effects such as diarrhea, changes in liver enzymes, and increased uric acid. Nothing is important when compared to other antiviral drugs. To improve the efficacy and safety of COVID-19 therapy, it is important to prepare an incidence report of antiviral adverse events in special populations such as children, pregnant women, and organ dysfunction. (J Respirol Indones 2022; 42(1): 67-75)

Keyword: Favipiravir, SARS-Cov-2, COVID-19, adverse event, side effects.

Keamanan Favipiravir untuk Terapi COVID-19: Tinjauan Sistematis Terbaru

Abstrak

Kata kunci: Favipiravir, SARS-Cov-2, COVID-19, adverse event, side effects.
SARS-coronavirus-2 (SARS-CoV-2) emerged in Hubei, China in past due 2019 as a reason of acute respiration misery syndrome and respiration contamination which could cause death (COVID-19).\(^1,2\) Older age, male sex, smoking, and the presence of comorbidities consisting of coronary heart disease, hypertension, and diabetes had been recognized as danger elements for exacerbation of infection.\(^3\)

SARS-CoV-2 belongs to the elegance of enveloped coronavirus and has a genetic collection just like the SARS-CoV-1 (80%) and RaTG-13 coronaviruses (96.2%) discovered in bats.\(^4\) Drug substitute consisting of the usage of off-label capsules is executed presently as an emergency alternative withinside the remedy of SARS-CoV-2 infection. Several capsules used for the remedy of COVID-19 consisting of ribavirin, interferon, favipiravir, lopinavir/ritonavir which have been utilized in SARS or MERS sufferers.\(^5\)

Favipiravir is an anti-influenza drug authorized in Japan and reveals diverse antiviral sports towards RNA viruses. Favipiravir is nicely tolerated in medical trials, even though it is related to a dose-based boom in serum uric acid levels.\(^5\)

Studies at the aspect consequences of favipiravir on its use withinside the remedy of COVID-19 have advanced in view that this drug became installed as one of the healing options. A higher expertise of the rising antiviral aspect consequences of favipiravir in COVID-19 sufferers from latest research is essential in growing and comparing the adoption of powerful remedies for COVID-19. The purpose of this article is to review the safety of using favipiravir for the treatment of the SARS-CoV-2 virus based on the incidence of adverse events in patients diagnosed with COVID-19 and hospitalized.

RESULTS

Based on research at PubMed, SCOPUS, Science Direct, SpringerLink, and MedRxiv, the author found 487 articles. 289 articles were excluded due to inappropriate titles, article types, and summaries. The rest of the article was then analyzed based on the intervention criteria and the suitability of the method and results section for the intended outcome. A total of 12 articles were considered to be satisfied, based on the title, article type, method, and results specified by the author. The study selection flowchart is shown in Figure 1.

A total of 434 patients participated in eight studies, examining the efficacy and observed side effects of favipiravir in the treatment of COVID-19. The study period varies from a minimum of 11 days to a maximum of 8 months. Various study methods were conducted, consisting of randomized and non-

randomized clinical studies, as well as prospective and retrospective cohort studies. The doses of favipiravir in 7 studies show similarities. That is, use 1600 mg each on the first day of treatment and take an additional 600 mg 2–3 times daily until 10–14 days of treatment, but the controls in each study are of different types and cans received.

In case reports, we found four reports of adverse events in 5 patients. Patient side effects were determined both after treatment and during favipiravir treatment according to international guidelines. In three reports, patients were given a starting dose of 3600 mg favipiravir followed by a maintenance dose of 1600 mg, while a report from Atak showed 20 years old patient received an initial dose of 1600 mg followed by 600 mg.6 Tables 1 and 2 summarize the characteristics of the studies included in this systematic review.

Table 3 shows the side effects reported during administration of favipiravir in each observational study. Three studies reported the incidence of hyperuricemia, four studies reported the incidence of gastrointestinal disorders, the main case of diarrhea, and five studies reported changes in liver enzyme levels. However, in these studies, there was no statistically significant difference in the side effects experienced from favipiravir compared to other antivirals or standard hospital treatments. Chen mentioned in his study the potential for significant hyperuricemia due to favipiravir compared to antiviral arbidol, but overall side effects were not significantly different during the observation period.6

Figure 1. PRISMA flowchart of article selection
<table>
<thead>
<tr>
<th>No.</th>
<th>Author, year</th>
<th>Study design</th>
<th>Study duration</th>
<th>Patient criteria</th>
<th>Severity</th>
<th>Favipiravir dose</th>
<th>Number of favipiravir group</th>
<th>Comparator</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Lou, 2021</td>
<td>RCT; single center</td>
<td>5 months</td>
<td>Participants confirmed COVID-19.</td>
<td>Not stated</td>
<td>The initial dose is 1600 mg or 2200 mg orally, followed by 600 mg three times a day for a total of 14 days of treatment.</td>
<td>9 participants</td>
<td>(1) baloxavir marboxil group; (2) Control group (Continuing existing antiviral treatment including lopinavir/ritonavir or darunavir/cobicistat and arbidol)</td>
</tr>
<tr>
<td>2.</td>
<td>Fujii, 2021</td>
<td>single-center, retrospective cohort study</td>
<td>8 months</td>
<td>Patients with fever, shortness of breath, decreased oxygen saturation, pneumonia on imaging, or worsening respiratory failure.</td>
<td>Severe</td>
<td>1800 mg twice daily on the first day, followed by 800 mg orally twice daily for up to 14 days.</td>
<td>54 participants</td>
<td>SOC</td>
</tr>
<tr>
<td>3.</td>
<td>Ivashchenko, 2021</td>
<td>RCT; multicenter</td>
<td>4 weeks</td>
<td>Hospitalized patients with moderate COVID-19 pneumonia</td>
<td>Moderate</td>
<td>1600 mg twice daily on Day 1 and 600 mg twice daily on Days 2–14, or 1800 mg twice daily on Day 1 and 800 mg twice daily on Days 2–14 (1800/800 mg).</td>
<td>40 participants</td>
<td>SOC</td>
</tr>
<tr>
<td>4.</td>
<td>Udwadia, 2021</td>
<td>RCT; multicenter; open-label</td>
<td>7 weeks</td>
<td>Age 18-75 years, mild to moderate COVID-19 infection (including no symptoms).</td>
<td>Mild to moderate</td>
<td>1600 mg twice daily on Days 1 and 600 mg twice daily on Days 2–14.</td>
<td>73 participants</td>
<td>SOC</td>
</tr>
<tr>
<td>5.</td>
<td>Cai, 2020</td>
<td>open-label, non-randomized, before-after controlled study</td>
<td>4-week</td>
<td>aged 16–75 years; had no trouble swallowing the pill</td>
<td>Mild to moderate</td>
<td>1600 mg twice daily on Day 1 and 600 mg twice daily on Days 2–14.</td>
<td>35 participants</td>
<td>Lopinavir/Ritonavir</td>
</tr>
<tr>
<td>6.</td>
<td>Dabbous, 2021</td>
<td>multi-center, randomized, interventional study</td>
<td>4 months</td>
<td>SARS-CoV-2 infection with mild or moderate symptoms and hospitalization three days after symptoms start.</td>
<td>Mild to moderate</td>
<td>1600 mg twice daily on day one followed by 600 mg twice daily from day two to ten.</td>
<td>44 participants</td>
<td>Chloroquine</td>
</tr>
<tr>
<td>7.</td>
<td>Chen, 2020</td>
<td>prospective, randomized, controlled, open-label multicenter trial</td>
<td>11 days</td>
<td>Positive chest CT scan at the age of 18 years or older; clinical symptoms include fever, cough, shortness of breath, and other signs of lower respiratory tract viral infection.</td>
<td>Moderate, severe, or critical</td>
<td>1600 mg twice daily followed by 600 mg twice daily for 10 days</td>
<td>116 participants</td>
<td>Conventional therapy plus Umifenovir (Arbidol) (200mg three times daily)</td>
</tr>
<tr>
<td>8.</td>
<td>Rattanaumpawan, 2020</td>
<td>retrospective observational study</td>
<td>3 months</td>
<td>Patients at least 18 years of age having and receiving at least one dose of favipiravir</td>
<td>Moderate, severe, or critical</td>
<td>1600 mg twice daily on Day 1, followed by 600 mg twice daily on Days 2-10</td>
<td>63 participants</td>
<td>SOC</td>
</tr>
</tbody>
</table>
Table 2. Summary characteristics of the included case report studies.

<table>
<thead>
<tr>
<th>No.</th>
<th>Author, year</th>
<th>Patient criteria</th>
<th>Favipiravir dose</th>
<th>Occurrence of adverse events</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Murai, 2021</td>
<td>A 64-year-old woman tested positive for COVID-19 and was admitted to the hospital. For about a week, the patient complained of a persistent fever.</td>
<td>3600 mg per day on the first day and 1600 mg per day thereafter</td>
<td>Patient developed a fever (38°C) on day 12, suspected to be caused by bacterial pneumonia or drug fever. On day 13, favipiravir was stopped. The patient's body temperature gradually decreased after, there was no worsening of symptoms, and her fever was relieved without the use of antimicrobials.</td>
</tr>
<tr>
<td>2.</td>
<td>Koshi, 2021</td>
<td>A 52-year-old lady who tested positive for SARS-CoV-2 had been on maintenance hemodialysis three times a week for three years due to diabetic nephropathy. The patient had a 6-month history of severe diarrhea and had had coronary artery stenting, right lower limb amputation, and latent pulmonary TB therapy.</td>
<td>3600 mg initial dose followed by 1600 mg orally daily in two divided doses</td>
<td>Mild and reversible increase of alkaline phosphatase (ALP) and gamma-glutamyl transpeptidase (γ-GTP).</td>
</tr>
<tr>
<td>3.</td>
<td>Atak, 2021</td>
<td>A 20-year-old man was hospitalized for COVID-19 infection 16 days ago and was receiving favipiravir</td>
<td>Initial dose 1600 mg twice daily, followed by 600 mg twice daily for 7 days</td>
<td>The patient was readmitted after complaining for two days of a minor itching eruption with a rapid onset. Histology revealed epidermal acanthosis with many neutrophilic subcorneal/intracorneal spongiotic pustules and papillary dermal edema. In the dermis, there was a mixed inflammatory infiltration of lymphocytes, neutrophils, and few eosinophils. The patient has been diagnosed with AGEP caused by favipiravir (Acute generalized exanthematous pustulosis).</td>
</tr>
<tr>
<td>4.</td>
<td>Tsuboi, 2021</td>
<td>FIRST PATIENT: A 70-year-old woman, was a past smoker with co-morbidities such as: emphysema, dyslipidemia, and an overactive bladder.</td>
<td>Initial dose 3600 mg on the first day and 1600 mg on second day and thereafter.</td>
<td>FIRST PATIENT: decreased of viral load that measured by real-time RT-PCR after treatment, but increased back on day 12, 2 days after the end of treatment. Patient showed transient fever, dyspnea on exertion, a decrease in SpO2 at the same time, but did not worsen thereafter.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SECOND PATIENT: A 61-year-old woman, has never smoked but suffers from hypertension and dyslipidemia.</td>
<td></td>
<td>SECOND PATIENT: RT-PCR examination showed a decrease in viral load during treatment, but transient fever, malaise, dyspnea, and tachypnea on activity also a transient increase in viral load were observed the day after treatment ended.</td>
</tr>
</tbody>
</table>
Table 3. Adverse reactions reported during favipiravir administration in each clinical study. NR: Not reported.

<table>
<thead>
<tr>
<th>No.</th>
<th>Author, year</th>
<th>Adverse events</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Lou, 2021⁷</td>
<td>Respiratory failure or ARDS (44%); Lymphopenia (77%); Leukopenia (11%); Decreased hemoglobin (77%); Increased aspartate aminotransferase (11%); Increased alanine aminotransferase (44%); Elevated total bilirubin (11%); Albumin decreased (88%); Elevated creatine phosphokinase (11%); Increased lactate dehydrogenase (55%); Increased triglycerides (66%); Improved D-dimer (55%); Diarrhea (22%); Rash (11%); Nausea (11%)</td>
<td>NR</td>
</tr>
<tr>
<td>2.</td>
<td>Fujii, 2021⁸</td>
<td>Hyperuricemia (55.5%), impaired liver function (31.4%), drug eruption (7.4%), drug fever (5.5%), and increased eosinophil count (1.8%)</td>
<td>NR</td>
</tr>
<tr>
<td>3.</td>
<td>Ivashchenko, 2021⁹</td>
<td>17.5% of patients experienced side effects in the form of diarrhea, nausea, vomiting, chest pain, and increased levels of liver transaminases.</td>
<td>NR</td>
</tr>
<tr>
<td>4.</td>
<td>Udwadia, 2021¹⁰</td>
<td>Hyperuricemia (16.4%); Abnormal liver function tests (6.8); Viral pneumonia (2.7%); Gastrointestinal disturbances (1.4%)</td>
<td>NR</td>
</tr>
<tr>
<td>5.</td>
<td>Cai, 2020⁴</td>
<td>Diarrhea (5.71%); liver and kidney injury (2.86%) and others (2.86%)</td>
<td>P<0.001</td>
</tr>
<tr>
<td>6.</td>
<td>Dabbous, 2021¹¹</td>
<td>Diarrhea (6.8%); elevated liver enzymes (6.8%); nausea (2.3%); headache (2.3%); anemia (4.5%); hyperuricemia (4.5%); decreased neutrophils (4.5%)</td>
<td>P>0.05</td>
</tr>
<tr>
<td>7.</td>
<td>Chen, 2020¹²</td>
<td>Abnormal LFT (8.62%); Increased serum uric acid (13.79%); Reaction to psychiatric symptoms (4.31%); Gastrointestinal tract reactions (13.79%)</td>
<td>P<0.05 in the incidence of hyperuricemia</td>
</tr>
<tr>
<td>8.</td>
<td>Rattanaumpawan, 2020¹³</td>
<td>Diarrhea (54.0%), followed by nausea/vomiting (7.9%), hepatitis (6.4%), and QT interval prolongation on the ECG (6.4%). None of these side effects are life-threatening.</td>
<td>NR</td>
</tr>
</tbody>
</table>

DISCUSSION

This systematic review includes publicly available observational studies on the safety of favipiravir use during the COVID-19 pandemic. Favipiravir has dose-dependent side effects and is well tolerated by patients undergoing treatment. The overall safety profile was not significantly different from the comparator products in terms of standard treatment and other antiviral agents.

Favipiravir is associated with the effects of hyperuricemia, such as diarrhea. This is indicated by the percentage that occurred in the observed studies compared to other side effects. Favipiravir is mainly metabolized by aldehyde oxidase, partly metabolized by xanthine oxidase in the liver, and produces favipiravir M1 as an inactive metabolite excreted by the kidneys. The increase in uric acid in the blood caused by favipiravir is due to its action of reducing the amount of uric acid excreted in the urine. Favipiravir and its inactive metabolite M1 are moderate inhibitors of OAT1 and OAT3 (organic anion transporters 1 and 3) that transport uric acid for luminal excretion in the basolateral region. Decreased uric acid uric acid secretion and increased uric acid reuptake via uric acid transporter 1 (uric acid reuptake via uric acid transporter 1) due to inhibition of OAT1 and OAT3 leads to a mechanism of increased blood uric acid.¹⁷

The dose-dependent effect of favipiravir has been observed in Phase III safety studies. Blood uric acid levels were found to have returned to baseline after discontinuation of treatment. Blood uric acid levels averaged 4.4 mg/dl above baseline 6 days after favipiravir administration (3,200 mg on day 1, followed by 1,200 mg on day 25) and returned to normal 7 days after discontinuation.¹⁷ The incidence of increased blood uric acid (including hyperuricemia) occurred in 9.9% (24/242) of healthy adults in Japan, but was 5.8 in those treated with the recommended dose of favipiravir. It was 5.8% (23 out of 394).¹⁶ This
may also support the results of several observational studies that found that there was no significant difference in blood uric acid levels between patients receiving favipiravir and other antivirals.

The incidence of diarrhea was also mentioned in several studies, but there was no significant difference between favipiravir and comparative antivirals or standard treatments. It is believed that this is because SARS-CoV-2 can also cause diarrhea. The SARS-CoV-2 ACE2 cell receptor is expressed in various types of cells and tissues, including the esophagus, stomach, small intestine, colon, and rectum. The highest gastrointestinal ACE2 expression levels are found in ileal epithelial cells, especially resorbable enterocytes. The direct and indirect effects of cytokines can combine to cause an enterocyte ion imbalance, which can contribute to the development of diarrhea. Viral E-proteins, ionic imbalances, impaired barrier integrity, and dysregulation of the renin vascular tension aldosterone system, which causes inflammation, play important roles in secretory diarrhea and intestinal leakage in patients with COVID-19.19

We include 2 cases reported adverse event during therapy with favipiravir such as drug fever, also mild and reversible elevation of liver enzyme. Drug fever is a type of reaction associated with temporary fever caused by drug therapy and disappears when the pathogen is stopped. The main feature that distinguishes drug fever from other causes is the fever that disappears after the drug is stopped. Five mechanisms of drug fever have been identified. Fever can be caused by the effects of drugs on thermoregulation, drug administration-related reactions, pharmacological effects of drugs, idiosyncratic reactions, and hypersensitivity reactions, the most common mechanism of drug fever.

Another 3 cases report showed adverse event after treatment of favipiravir, with 2 cases happened during hospital admission and 1 case after remission. In the two cases reported by Tsuboi et.al, the viral load increase after completion of favipiravir treatment was transient.16 The viral load spontaneously decreased and the clinical symptoms improved. A slight temporary increase in viral load called "blip" has also been reported during treatment. From this perspective, these two cases may represent phenomena such as "outbreaks" in antiviral treatment. In the case of COVID-19, delays in hospitalization after the onset of the disease have also been reported to prolong SARS-CoV-2 infection.20 In both cases of this report, antiviral therapy was started relatively late, 10 days after the onset of the disease. This may have caused a phenomenon like "blip".

Koshi et.al reported the first report on the efficacy of favipiravir in end- stage renal disease (ESRD) patients undergoing hemodialysis.15 It showed that favipiravir may be an effective option for treating patients with ESRD infected with COVID-19 based on improvement in vital sign and laboratory data, with mild and reversible elevation of alkaline phosphatase (ALP) and gamma-glutamyl transpeptidase (γ-GTP). Despite this finding, the safety of Favipiravir in COVID-19 patients with or without concurrent renal problems requires further data and a more comprehensive analysis.

The studies included in this review are limited. This work was limited to the environment and population contained in the research center with adult participants. As a result, the results are less applicable to younger patients with COVID-19. No conclusions can be drawn from the 12 studies due to the different study designs that involve the discussion of case reports. Case reports are for support purposes only.

The authors are grateful to the Directorate of Research and Development, Universitas Indonesia, for their financial support through PUTI Q1 Grant No. NKB-1274/UN2.RST/HKP.05.00/2020.

CONCLUSIONS

Based on clinical study, the use of favipiravir to treat COVID-19 causes several adverse events such as diarrhea, changes in liver enzymes, and increased uric acid. Some are less important than other antiviruses and reversible. In case reports, there are rare adverse event such as acute generalized
exanthematous pustulosis (AGEP), we also include transient increase in viral load the day after treatment favipiravir ended.

To improve the efficacy and safety of COVID-19 therapy, it is important to develop incident reports of antiviral side effects in special populations such as children, pregnant women, and organ dysfunction. If favipiravir is considered prophylactic, further studies of the long-term effects of treatment are needed.

REFERENCES

