Effectiveness of Vitamin C Administration on Outcome in COVID-19 Patients: A Systematic Review and Meta-Analysis

Desie Dwi Wisudanti¹, Nur Lintang Nabilah², Adelia Handoko³, Cholis Abrori⁴, Angga Mardro Raharjo⁴

¹Department of Pharmacology, Faculty of Medicine, University of Jember, Jember, Indonesia
²Faculty of Medicine, University of Jember, Jember, Indonesia
³Department of Physiology, Faculty of Medicine, University of Jember, Jember, Indonesia
⁴Department of Pulmonology, dr. Soebandi Regional Hospital, Jember, Indonesia

Abstract

Background: Numerous studies on the effectiveness of vitamin C against the COVID-19 infection have been widely carried out recently. However, the differences in dosage ranges and therapeutic efficacy in previous studies have prompted a systematic literature review on the effectiveness of vitamin C on outcomes in COVID-19 patients. In addition, this study aimed to determine the appropriate therapeutic dose of vitamin C for COVID-19 patients, either alone or in combination with other supplements, and to determine the side effects.

Methods: Gleaned from the search on Pubmed, Science Direct, and Google Scholar databases up to April 25, 2022, fourteen studies were relevant, namely five studies using vitamin C orally and nine studies administered intravenously. We assessed multiple outcomes, including mortality, hospitalization, and symptoms. The quality and risk of bias analyses were performed using JBI critical appraisal tools.

Results: The oral administration of vitamin C resulted in a significant difference in the mortality of COVID-19 patients (OR=0.66; 95% CI=0.45–0.97; P=0.04; I²=0%) and a non-significant difference in the outcome. Duration of hospitalization (OR = -0.21; 95% CI = -2.70-2.28; P=0.87; I²=94%). Regarding the cost-effectiveness and side effects manifested in digestive disorders such as nausea, diarrhea, stomach cramps, and vomiting, vitamin C with a dose of 500-1000 mg could be given orally.

Conclusion: Oral administration of vitamin C showed a reduction in the mortality of asymptomatic COVID-19 patients with moderate symptoms.

Keywords: ascorbic acid, mortality, SARS-CoV-2, supplements

INTRODUCTION

Coronavirus disease 2019 (COVID-19) is a disease characterized by severe acute respiratory syndrome.¹ It spread rapidly around the world and led to an increase in confirmed cases of COVID-19. Hence, the World Health Organization (WHO) declared a pandemic in 2020 due to this disease. The prevalence of COVID-19 in the world as of March 18, 2022, reached 480,170,572 confirmed cases with a death toll of 6,124,396. In Indonesia, the incidence of COVID-19 was 6,001,751 confirmed cases, with a death toll of 154,774.²

Since its first appearance, the high rate of confirmed COVID-19 by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and the death rate in COVID-19 patients have led to continued research on this subject, one of which is research on supplements for COVID-19 patients.³ Additional supplementation in COVID-19 patients is necessary because the pathophysiological involvement is very complex and involves a decrease in the immune system. This additional supplement can act as an immunomodulator, anti-oxidant, and anti-inflammatory.⁴

The supplement for COVID-19 that has been widely studied is vitamin C.⁵ Ascorbic acid, or vitamin C, is an anti-oxidant that can fight reactive oxygen species (ROS). In COVID-19 patients, there is excessive ROS production due to an impaired body defense system resulting in an increase in oxidative stress that contributes to tissue damage.⁶ Apart from being an anti-oxidant, vitamin C also acts as an immunomodulator.⁷,⁸ In the case of influenza, the administration of vitamin C has a symptom-
ameliating effect, reduces hospitalization duration, and significantly reduces the risk of death.⁹

Several studies on the effectiveness of vitamin C in COVID-19 patients have been conducted, both in RCTs and cohort studies. The results show differences in the effectiveness of therapy and variations in the dose used. Therefore, further research studies are required to provide up-to-date information on the effectiveness, therapeutic dose, and side effects of vitamin C administration on outcomes in COVID-19 patients.

METHODS

We collected the data from articles published in Google Scholar, Pubmed, and Science Direct until April 25, 2022, using Coronavirus Disease, COVID-19, SARS-CoV-2, vitamin C, and ascorbic acid as the keywords. A critical analysis of the selected studies was performed using The Joanna Briggs Institute (JBI) Critical Appraisal Tools for risk assessment of bias by the researcher and three reviewers. The meta-analysis was generated in compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement.

The inclusion criteria used were: (1) randomized control trial (RCT) and cohort studies, from 2019 to 2022; (2) studies related to the administration of vitamin C to COVID-19 patients (primary or reinfection COVID-19 patients). The exclusion criteria were: (1) treatment of COVID-19 in the pregnant female population; (2) samples of less than 50; (3) incomplete information or full texts unavailable.

We used Review Manager Software version 5.3 to perform our meta-analysis to estimate the pooled odds ratio (OR), mean difference (MD), and 95% confidence interval (95% CI). The value of P less than 0.05 was considered to be statistically significant. The statistical heterogeneity was evaluated using the I^2 statistics. We performed a subgroup analysis among subjects who received vitamin C orally or intravenously, with mortality as the outcome of efficacious therapy, to minimize the impact of heterogeneity on the outcome of our results.

RESULTS

Based on the search of three databases, we found 1,222 studies. Subsequently, an eligibility assessment was conducted, and we excluded 1,208 studies, resulting in fourteen studies for further review. The study selection process is laid out in Figure 1.

From the 14 studies reviewed, ten articles discussed the administration of vitamin C as a single supplement¹⁰–¹⁹, and four studies examined the administration of a combination of vitamin C.²⁰–²³ We analyzed the articles by extracting and synthesizing data. Outcomes obtained from this study were grouped into three types: mortality, hospitalization, and symptoms (duration of illness, fever, and anosmia). The results of data extraction and synthesis are shown in Table 1.
Table 1. Results of data extraction and synthesis

<table>
<thead>
<tr>
<th>No</th>
<th>Author, Year of Publication, Country</th>
<th>Study Design</th>
<th>Study Setting</th>
<th>Type of Intervention</th>
<th>Mode of administration</th>
<th>Dose</th>
<th>Duration of Study</th>
<th>Infection (Primary/Reinfection)</th>
<th>Effectiveness</th>
<th>Side Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jamali Moghadam, Saeidreza, et al., 2020, Iran</td>
<td>RCT</td>
<td>Administration of vitamin C to 60 severe COVID-19 patients at Ziaei Hospital, Iran from April - May 2020 which was divided into two groups</td>
<td>Group I: vitamin C and HCQ</td>
<td>IV</td>
<td>6 grams vitamin C per day</td>
<td>5 days</td>
<td>Primary</td>
<td>There was an improvement in temperature in both groups, can reduce fever ($P=0.001$)</td>
<td>Unknown</td>
</tr>
<tr>
<td>2</td>
<td>Kumari, Poona, et al., 2020, Pakistan</td>
<td>RCT</td>
<td>Administration of vitamin C to 150 COVID-19 patients at Karachi Hospital from March – to July 2020 which was divided into two groups</td>
<td>Group I: vitamin C and standard therapy</td>
<td>IV</td>
<td>50 mg/kg BW/day</td>
<td>4 weeks</td>
<td>Primary</td>
<td>Symptoms improved (fever, dry cough, anosmia, and diarrhea) more quickly (5-9 days) ($P=0.001$) and hospitalization time (7-9 days) ($P=0.001$) compared to the control group.</td>
<td>Unknown</td>
</tr>
<tr>
<td>3</td>
<td>Zhang, Jing, et al., 2020, China</td>
<td>RCT</td>
<td>Administration of vitamin C to 56 patients with severe COVID-19 in the ICU of three hospitals in China from February to March 2020 which was divided into two groups</td>
<td>Group I: vitamin C and bacteriostatic infusion</td>
<td>IV</td>
<td>12 grams 2 times a day</td>
<td>7 days</td>
<td>Primary</td>
<td>Did not affect the use of mechanical ventilation ($P=0.57$)</td>
<td>Unknown</td>
</tr>
<tr>
<td>4</td>
<td>Li, Matthew, et al., 2021, United States of America</td>
<td>Cohort Retrospective</td>
<td>Administration of vitamin C to 56 COVID-19 patients from April – to May 2020</td>
<td>Group I: vitamin C, hydrocortisone, and thiamine</td>
<td>IV</td>
<td>1.3 grams 4 times a day</td>
<td>4 days</td>
<td>Primary</td>
<td>Did not affect mortality ($P=0.05$) and hospitalization duration ($P=0.71$)</td>
<td>Unknown</td>
</tr>
<tr>
<td>5</td>
<td>Gao, Dengfeng et al., 2021, China</td>
<td>Cohort Retrospective</td>
<td>Administration of vitamin C to 76 COVID-19 patients in the ICU of the China Hospital which was divided into two groups</td>
<td>Group I: vitamin C and standard therapy</td>
<td>IV</td>
<td>Loading dose of 6 grams of vitamin C IV twice a day on the first day followed by 6 grams a day the next day</td>
<td>28 days</td>
<td>Primary</td>
<td>Reduced mortality ($P=0.03$)</td>
<td>Unknown</td>
</tr>
<tr>
<td>No</td>
<td>Author, Year of Publication, Country</td>
<td>Study Design</td>
<td>Study Setting</td>
<td>Type of Intervention</td>
<td>Mode of administration</td>
<td>Dose</td>
<td>Duration of Study</td>
<td>Infection (Primary/Reinfection)</td>
<td>Effectiveness</td>
<td>Side Effect</td>
</tr>
<tr>
<td>----</td>
<td>-----------------------------------</td>
<td>--------------</td>
<td>---------------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>------</td>
<td>-----------------</td>
<td>---------------------------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>6</td>
<td>Hakamifard, Atousa, et al., 2021, Iran</td>
<td>RCT</td>
<td>Administration of vitamin C and vitamin E to 72 COVID-19 patients with pneumonia in Iran</td>
<td>Group I: vitamin C, vitamin E, and standard therapy Group II: only standard therapy</td>
<td>Oral</td>
<td>Vitamin C: 1000 mg per day Vitamin E: 400 IU per day</td>
<td>7 days</td>
<td>Primary</td>
<td>Vitamin C and vitamin E did not have a significant effect on COVID-19 patients ($P=0.380$)</td>
<td>Unknown</td>
</tr>
<tr>
<td>7</td>
<td>Suna, Kavurgaci, et al., 2021, Turkey</td>
<td>Cohort Retrospective</td>
<td>Administration of vitamin C to 323 COVID-19 patients in Türkiye in September 2020</td>
<td>Group I: vitamin C and standard therapy Group II: only standard therapy</td>
<td>IV</td>
<td>2 grams per day</td>
<td>30 days</td>
<td>Primary</td>
<td>Did not affect hospitalization duration ($P=0.05$) and mortality ($P=0.52$)</td>
<td>Unknown</td>
</tr>
<tr>
<td>8</td>
<td>Zheng, Shaoring, et al., 2021, China</td>
<td>Cohort Retrospective</td>
<td>Administration of vitamins to 397 severe COVID-19 patients in China in February 2020</td>
<td>Group I: vitamin C and standard therapy Group II: only standard therapy</td>
<td>IV</td>
<td>2 – 4 grams per day</td>
<td>7 days</td>
<td>Primary</td>
<td>Did not affect mortality and symptom improvement ($P=0.05$)</td>
<td>Unknown</td>
</tr>
<tr>
<td>9</td>
<td>Liu, Fang, et al., 2020, China</td>
<td>RCT</td>
<td>IV administration of vitamin C to 308 patients in two ICUs in China</td>
<td>Group I: vitamin C and standard therapy Group II: only standard therapy</td>
<td>IV</td>
<td>12 grams 2 times a day</td>
<td>7 days</td>
<td>Primary</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Majidi, Nazanin, et al., 2021, Iran</td>
<td>RCT</td>
<td>Administration of vitamin C to 69 COVID-19 patients in Iran in May-June 2020</td>
<td>Group I: vitamin C and standard therapy Group II: only standard therapy</td>
<td>Oral</td>
<td>500 mg per day</td>
<td>14 days</td>
<td>Primary</td>
<td>Reduced the average duration of hospitalization in COVID-19 patients four days faster than the control group ($P=0.01$)</td>
<td>Unknown</td>
</tr>
<tr>
<td>11</td>
<td>Al Sulaiman, Khalid, et al., 2021, Saudi Arabia</td>
<td>Cohort Retrospective</td>
<td>Administration of vitamin C to 739 severe COVID-19 patients in Saudi Arabia from March – to December 2020</td>
<td>Group I: were given vitamin C Group II: were not given vitamin C</td>
<td>Oral</td>
<td>1000 mg per day</td>
<td>30 days</td>
<td>Primary</td>
<td>Did not affect mortality ($P=0.11$)</td>
<td>Unknown</td>
</tr>
<tr>
<td>No</td>
<td>Author, Year of Publication, Country</td>
<td>Study Design</td>
<td>Study Setting</td>
<td>Subject Characteristics</td>
<td>Mode of administration</td>
<td>Dose</td>
<td>Duration of Study</td>
<td>Infection (Primary/Reinfection)</td>
<td>Effectiveness</td>
<td>Side Effect</td>
</tr>
<tr>
<td>----</td>
<td>------------------------------------</td>
<td>-------------</td>
<td>--------------</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>------</td>
<td>-----------------</td>
<td>-------------------------------</td>
<td>--------------</td>
<td>------------</td>
</tr>
</tbody>
</table>
| 12 | Thomas, Suma, et al., 2021, United States of America | RCT | 214 COVID-19 patients were divided into four groups | Group I: Standard therapy (anti-viral)
Group II: Vitamin C
Group III: Zinc gluconate
Group IV: Vitamin C and Zinc gluconate | Oral
50 mg zinc per day
8000 mg vitamin C (2-3 times a day) | 10 days | Primary | There was no significant difference ($P=0.45$) in the treated group (reduction of symptoms such as fever, shortness of breath, or fatigue) | Nausea, diarrhea, and stomach cramps in the vitamin C group |
| 13 | Ried, Karin, et al., 2021, Australia and Turkey | RCT | 237 COVID-19 patients were divided into two groups | Group I: HCQ, AZM, zinc
Group II: HCQ, AZM, zinc, and IV C
+ all groups were given vitamin D3 | Oral zinc IV vitamin C
Zinc citrate: 30 mg
Vitamin D: 5000 IU
Vitamin C: 50 mg/kg (divided by 4 times on the first day); 100 mg/kg (divided 4 times per day on the next 8 days) | 14 days | Primary | Significantly faster recovery in the group with IV vitamin C ($P=0.0069$) | Diarrhea, nausea, and vomiting in both groups |
| 14 | Margolin, Leon, et al., 2021, United States of America | Cohort | 113 individuals were given over the counter (OTC) products as treatment and prophylaxis | Group I: were given OTC (zinc, vitamin C, vitamin D, vitamin E, quina, l-lysine, azithromycin, and doxycycline)
Group II: were not given OTC drugs | Oral
Zinc: 25 mg
Vitamin C: 1000 mg
Vitamin D: 1000 IU | 5 days | Primary | Effective in treating mild to moderate symptoms ($P=0.04$) at 2 doses/day, with no or only minimal addition to prescription (other standard antibiotics) | Unknown |
Desie Dwi Wisudanti: Effectiveness of Vitamin C Administration on Outcome in COVID-19 Patients

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Vitamin C</th>
<th>Control</th>
<th>Mean Difference</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Events</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>Jamali Moghadam 2020</td>
<td>9.1 ± 1.2</td>
<td>7 ± 1.0</td>
<td>1.1 ± 0.5</td>
<td>30.2</td>
</tr>
<tr>
<td>Kumari 2020</td>
<td>9.1 ± 1.1</td>
<td>7 ± 1.0</td>
<td>1.0 ± 0.5</td>
<td>30.2</td>
</tr>
<tr>
<td>Li 2021</td>
<td>9.1 ± 1.2</td>
<td>7 ± 1.0</td>
<td>1.0 ± 0.5</td>
<td>30.2</td>
</tr>
<tr>
<td>Suna 2021</td>
<td>9.1 ± 1.2</td>
<td>7 ± 1.0</td>
<td>1.0 ± 0.5</td>
<td>30.2</td>
</tr>
<tr>
<td>Zhang 2020</td>
<td>9.1 ± 1.2</td>
<td>7 ± 1.0</td>
<td>1.0 ± 0.5</td>
<td>30.2</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>33 ± 1.0</td>
<td>27 ± 1.0</td>
<td>-0.2 ± 0.1</td>
<td>100.0</td>
</tr>
</tbody>
</table>

The meta-analysis design was performed on eleven articles with oral or IV vitamin C administration based on mortality outcomes and six articles with hospitalization outcomes. Eight articles using an IV vitamin C intervention and three using an oral vitamin C intervention were depicted through forest plot analysis in Figures 2 and 4. When viewed from the articles obtained, the IV vitamin C intervention did not significantly affect the mortality of severe COVID-19 patients (OR=0.80; 95% CI=0.31–2.09; P=0.66; I²=79%). Conversely, oral vitamin C significantly affected the mortality of asymptomatic COVID-19 patients and patients with mild to moderate symptoms of COVID-19 (OR=0.66; 95% CI=0.45–0.97; P=0.04; I²=94%). In this case, oral vitamin C intervention can reduce the mortality rate in COVID-19 patients by 66% compared to the control group.

The results of the second meta-analysis showed that the use of IV vitamin C had no effect (OR = -0.21; 95% CI = -2.70-2.28; P=0.87; I²=94) on the duration of hospitalization for COVID-19 patients.
Based on the funnel plot analysis results obtained in Figures 3 and 5, the asymmetric distribution of the data indicates a high publication bias. These results can be caused by many factors, such as the small number of studies used and the lack of databases used.

DISCUSSION

This systematic review assessed studies related to the effectiveness, dosage, and side effects of vitamin C administration either alone or in combination up to April 25, 2022. Based on these results, eight of the 14 studies showed notable results according to the significant values obtained from the statistical test.

The first outcome was the duration of hospitalization, and five studies assessed the variable duration of hospitalization as an outcome of the effectiveness of the therapy given. The meta-analysis results showed that the results were insignificant (P=0.87). One of the studies discovered that giving IV vitamin C at a dose of 50 mg/kg BW/day significantly (P=0.0001) reduced hospitalization duration by six to ten days faster than the control group.

A prior study supported this finding and revealed that administering a combination of oral vitamin C at a dose of 100 mg per day, vitamin D, and zinc showed a significant (P=0.00069) reduction in the duration of hospitalization compared to the control group. However, not all measurements of normal levels in the blood are carried out either before or after supplementation. Consequently, it cannot determine whether the levels in the blood are within normal limits.

The second outcome was symptoms, and five studies assessed this variable as an outcome of the effectiveness of the therapy given. The study explained that giving IV vitamin C significantly (P=0.001) reduced symptoms in the form of fever. Other studies revealed that giving IV vitamin C significantly (P<0.05) decreased symptoms in the form of fever and the duration of pain was shorter than in the control group.

The third outcome was mortality, and two studies showed a decrease in mortality rates. These studies obtained a significantly reduced mortality (P=0.03 and P=0.05) in the treatment group. The meta-analysis results for mortality outcomes pointed out significant results (P=0.04) in the subgroup using oral vitamin C in asymptomatic to moderately symptomatic COVID-19 patients. In contrast to the previous meta-analysis, it was explained that vitamin C administration had no effect on COVID-19 patients. The distinction between the findings of previous studies and our study could be due to differences in study design. The prior study only used one study design, an RCT. Other causes were found in the outcomes assessed. Both studies looked at the outcome of using mechanical ventilation and duration of stay in the ICU. Because the patient's condition was already severe, the effectiveness of a supplement decreased, yielding insignificant results.

Another reason for the difference in results could be due to many factors, such as the clinical classification of patients, advanced age, and comorbidities, which were groups prone to worsening symptoms and even death. Comorbidities that aggravated the patient's condition included metabolic diseases, for instance, diabetes mellitus and hypertension, a history of smoking, and chronic lung disease (asthma, COPD, and chronic bronchitis).

Oral administration of vitamin C has been described in prior studies that used vitamin C at a dose of 500-1000 mg and 8000 mg per day.
The IV administration of vitamin C in other studies used doses of 1.3 grams per day, 2-12 grams per day, 50 mg/kg BW/day, and 100 mg/kg BW/day. Oral vitamin C comes in doses of 100 mg, 250 mg, 500 mg, and 1000 mg, while IV solutions are available in 100 mg/ml and 200 mg/ml. In general, dosing to get maximum results with minimal side effects needs to be considered based on the history of the disease, individual needs, over-the-counter drugs, and the costs involved. Based on cost-effectiveness considerations, oral administration of vitamin C with a dose range of 500-1000 mg was significantly \((P=0.04) \) effective for reducing mortality in asymptomatic COVID-19 patients compared to COVID-19 patients with moderate symptoms.

Three of the 14 studies stated that there were side effects. These studies revealed similar side effects of vitamin C when taken orally and intravenously. Side effects manifested in digestive disorders include nausea, diarrhea, stomach cramps, and vomiting. The IV administration of vitamin C still causes indigestion, even though it is not as common as oral administration.

Digestive disorders in COVID-19 patients often occur because the ACE2 receptor is expressed in numerous body tissues. The digestive organs are receptors for the SARS-CoV-2 virus, which will activate ACE2 receptors in the digestive tract in the early stages of infection and cause digestive disorders. However, in the next phase, the symptoms of indigestion will decrease. On the condition that side effects arise, it is recommended to discontinue vitamin C since gastrointestinal disturbances might induce changes in gut microbes and increase pro-inflammatory cytokines. Other side effects are lymphopenia, leukopenia, ARDS, shock, and sepsis. However, it has been confirmed that these side effects are not related to the administration of vitamin C.

Apart from determining the dose and method of administering the drug, it is essential to consider the side effects due to supplementation. Multiple factors can induce side effects when consuming supplements, including the patient's medical history (such as gastritis), the degree of disease, reactions that may arise from each component, and the synergistic effect of the drug. The physician and other health professionals must ascertain this point to determine from which factor these side effects emerge. Whether it is purely due to supplementation in the absence of other factors, the supplementation administration should be reconsidered.

LIMITATION

This systematic review had some limitations, such as the limited number of similar study designs, thus using a combination of RCT and cohort study designs. Furthermore, not all studies included complete data, such as expected levels of vitamin C in human blood samples, follow-up data for patients after treatment, and strategies for dealing with lost to follow-up patients.

Lastly, there was heterogeneity in the meta-analytical assessment of IV vitamin C due to the heterogeneous population. Despite these limitations, our study engaged a plentiful sample consisting of 2,870 participants from fourteen studies with a low risk of bias across all articles.

CONCLUSION

Based on the meta-analysis conducted in this study, we found that oral administration of vitamin C had a significant effect \((P=0.04) \) on the mortality rate of COVID-19 patients, and the use of IV vitamin C showed no significant effect \((P=0.87) \) on the duration of hospitalization for COVID-19 patients. Other outcomes, in particular symptoms, could not measure the effectiveness of therapy due to the limitations of the participants involved in the study. In consideration of cost-effectiveness, oral administration of vitamin C with a dosage range of 500-1000 mg demonstrated efficacy in reducing mortality rates in COVID-19 patients. Side effects due to supplementation consumption included digestive disorders such as nausea, diarrhea, stomach cramps, and vomiting.
ACKNOWLEDGMENTS

We would like to thank Achmad Ilham Tohari for his technical assistance with the meta-analysis table.

CONFLICT OF INTEREST

None.

FUNDING

None.

REFERENCES

1. WHO. Coronavirus [Homepage on the Internet]. 2021 [cited 2021 Sep 14];19–22. Available from: https://www.who.int/health-topics/coronavirus#tab=tab_1