Differences of Malondialdehyde (MDA) Levels in Blood of Pulmonary Tuberculosis Sufferers with Diabetes Mellitus, Pulmonary Tuberculosis without Diabetes Mellitus and Healthy People in Medan
DOI:
https://doi.org/10.36497/jri.v40i4.124Keywords:
Pulmonary TB, Type 2 Diabetes Mellitus, MalondialdehydeAbstract
Background: The imbalance between oxidants and antioxidants in the body can increase Malondialdehyde (MDA) in patients with pulmonary TB and type 2 DM, which causes cell damage and worsens the disease. The body has a protective mechanism from damage caused by increased MDA through enzymatic antioxidants such as SOD and vitamin E. This study aimed to examine the difference in MDA levels in the blood of pulmonary TB patients with type 2 DM, pulmonary tuberculosis without type 2 DM and healthy people in Medan, Indonesia. Methods: This was an analytical study using a case-control approach by measuring MDA levels in pulmonary TB with type 2 DM patients, pulmonary TB patients and healthy people who were treated at H. Adam Malik General Hospital, Community Health Centers, and GP’s practice in Medan for 4 months. Blood samples were taken and examined using the ELISA kit. Data were then analyzed using the Kruskal Wallis and Mann Whitney tests. Results: There were 75 patients recruited in the study in which 45 were males (60%) and 30 were females (40%). The age group found the most was 31-40 years with normal BMI (76%). The highest MDA level was found in the TB+DM group at 12.42 nmol/ml compared to the TB patients (3.75 nmol/ml) and healthy people (3.01 nmol/ml). Conclusion: There were no statistically significant differences in MDA levels although there was a difference found in the MDA levels among the three groups with MDA level in TB+DM group was shown to be the highest.Downloads
References
Dolin PJ, Raviglione MC, Kochi A. Global tuberculosis incidence and mortality during 1990-2000. Bull World Health Organ. 1994;72(2):213-20.
World Health Organization. Global tuberculosis control: surveillance, planning, financing: WHO report 2006 [cited 2019 Aug 4]. Available from: https://apps.who.int/iris/handle/10665/144567.
Sanusi H. Diabetes mellitus dan tuberkulosis paru. Jurnal Medika Nusantara. 2006;25(1):45-9.
Guptan A, Shah A. Tuberculosis and Diabetes: An Appraisal. Ind J Tuberculosis. 2000;47(3):3-8.
Acuña-Villaorduña C, Jones-López EC, Fregona G, Marques-Rodrigues P, Gaeddert M, Geadas C, et al. Intensity of exposure to pulmonary tuberculosis determines risk of tuberculosis infection and disease. Eur Respir J. 2018;51:1701578.
Mihardjal L, Lolong DB, Ghani L. Prevalensi diabetes melitus pada tuberkulosis dan masalah terapi. Jurnal Ekologi Kesehatan. 2015;14(4):350-8.
Kwiatkowska S, Piasecka G, Zieba M, Piotmoski W, and Nowak D. Increased serum concentration of conjugated malondialdehyde in patients with pulmonary tuberculosis. Respir Med. 1999;93:272-6.
Tostman A, Boeree MJ, Aarnouts RE, de Lange WC, Van der Ven AJAM, and Dekhuijen R. Antituberculosis drug-induced hepatotoxicity: Concise up-to-date review. J Gastroenterol Hepatol. 2007;23:192–202.
Akiibinu MO, Ogunyemi OE, Arinola OG, Adenaike AF, Adegoke OD. Assessment of antioxidants and nutritional status of pulmonary tuberculosis patients in Nigeria. Eur J Gen Med. 2008;5(4):208-11.
Saraswathy SD, and Devi CSS. Antitubercular drugs induced hepatic oxidative stress and ultrastructural changes in rats. BMC Infectious Disease. 2012;12:85-92.
Taha DA, and Imad AJT. Antioxidant status, C-Reactive Protein and status in patient with pulmonary tuberculosis. Sultan Qaboos Univ Med J. 2010;10(3):361-9.
Gordon LA, Morrison EY, McGrowder DA, Young R, Fraser YTP, Zamora EM, Alexander-Lindo RL, Irving RR. Effect of exercise therapy on lipid profile and oxidative stress indicators in patients with type 2 diabetes. BioMed Central. 2008;8(21):1-10.
Moussa SA. Oxidative stress in diabetes mellitus. Romanian J Biophys. 2008;18(3):225-36.
Pour OR, Dagogo-Jack S. Prediabetes as a therapeutic target. Clin Chem. 2011;57(2):215-20.
Winarsi H. Antioksidan Alami dan Radikal Bebas: Potensi dan Aplikasinya dalam Kesehatan. Yogyakarta: Kanisius; 2007.p.19-23.
Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A. Biomarkers of oxidative damage in human disease. Clin Chem. 2006;52(4):601-23.
Soelistijo SA, Novida H, Rudijanto A, Soewondo P, Suastika K, Manaf A, et al. Konsensus Pengelolaan dan Pencegahan Diabetes Melitus Tipe 2 di Indonesia 2015. Jakarta: PB Perkeni. 2015.p.25-6.
Achanta S, Tekumalla RR. Jaju J. Purad C, Chepuri R. Samyukta R. et al. Screening tuberculosis patients for diabetes in a tribal area in South India. International Union Against Tuberculosis and Lung Disease, Health Solution for the Poor in India. Public Health Action. 2013;3(1):44-7.
Fauziah DF, Basyar M, Manaf A. Insidensi tuberkulosis paru pada pasien diabetes melitus tipe 2 di ruang rawat inap penyakit dalam RSUP Dr. M. Djamil Padang. Jurnal Kesehatan Andalas. 2016;5(2):349-54.
American Diabetes Association. Classification and diagnosis of diabetes: standards of medical care in diabetes 2018. Diabetes Care. 2018;41:S13–27.
Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2015;38:140–9.
Cai J, Ma A, Wang Q, Han X, Zhao S, Wang Y, et al. Association between Body Mass Index and diabetes mellitus in tuberculosis patients in China: A community based cross-sectional study. BMC Public Health. 2017;17:228.
Cegielski JP, Murray MDN. The relationship between malnutrition and tuberculosis: Evidence from studies in humans and experimental animals. Int J Tuberc Lung Dis. 2004:8(3):286-98.
Gupta S, Shenoy VP, Mukhopadhyay C, Bairy I, Muralidharan S. Role of risk factors and socio-economic status in pulmonary tuberculosis: A search for the root cause in patients in a tertiary care hospital South India. Trop Med Int Health. 2011;16(1):74-8.
Valavanidis A, Vlachogianni T, Fiotakis K. Tobacco smoke: involvement of reactive oxygen species and stable free radicals in mechanisms of oxidative damage, carcinogenesis and synergistic effects with other respirable particles. Int J Environ Res Public Health. 2009;6(2):445-62.
World Health Organization. WHO Report on the Global Tobacco Epidemic, 2008: the MPOWER package. Geneva: World Health Organization. 2008 [cited 2019 Aug 10]. Available from: https://apps.who.int/iris/handle/10665/43818.
Lykkesfeldt J, Viscovich M, Poulsen HE. Plasma malondialdehyde is induced by smoking: a study with balanced antioxidant profiles. Br J Nutr. 2004;92(2):203-6.
Suryohandono, Purnomo. Oksidan, Antioksidan, dan Radikal Bebas. Buku Naskah Lengkap Simposium Pengaruh Radikal Bebas Terhadap Penuaan dalam Rangka Lustrum IX FKUA 7 September 1955-2000 [cited 2019 Aug 10]:1-11. Available from: https://adoc.pub/oksidan-antioksidan-dan-radikal-bebas.html.
Gitawati R. Radikal bebas: sifat dan peranan dalam menimbulkan kerusakan atau kematian sel. Dalam: Cermin Dunia Kedokteran No. 102. Jakarta: PT. Kalbe Farma. 1995: p. 33-6.
Downloads
Published
Issue
Section
License
- The authors own the copyright of published articles. Nevertheless, Jurnal Respirologi Indonesia has the first-to-publish license for the publication material.
- Jurnal Respirologi Indonesia has the right to archive, change the format and republish published articles by presenting the authors’ names.
- Articles are published electronically for open access and online for educational, research, and archiving purposes. Jurnal Respirologi Indonesia is not responsible for any copyright issues that might emerge from using any article except for the previous three purposes.