p21 Genetic Modification as a Tumor-Suppressor Gene: A Future Target in Lung Cancer Therapy?

Authors

DOI:

https://doi.org/10.36497/jri.v43i1.438

Keywords:

genetic modification therapy, lung cancer, p21WAF1/CIP1

Abstract

Lung cancer is one of the most common cancers and the leading cause of cancer death worldwide. Although early diagnosis/screening methods and treatment strategies have developed, lung cancer patient survival rates remain low. However, resistance to chemotherapy and radiotherapy causes tumor recurrence and worsening of the disease, thus being the lead cause of treatment failure. In the growth cycle of lung cancer cells, the highest p21WAF1/CIP1 gene expression was found in early-stage lung cancer and decreased in advanced lung cancer. In addition, the association between CDK inhibitors and patient survival showed that inactivation of the p21WAF1/CIP1 and p16INK4a genes was associated with lower overall survival and poor prognosis. In this review, we will focus on the role of genetic modification in lincRNA-p21 in lung cancer therapy and the importance of a combination therapeutic approach.

Downloads

Download data is not yet available.

Author Biography

  • Adityo Wibowo, Department of Respiratory Medicine, Juntendo University Graduate School of Medicine
    staf departemen pulmonologi dan kedokteran respirasi FK Universitas Lampung staf departemen fisiologi FK Universitas Lampung

References

Xie D, Lan L, Huang K, Chen L, Xu C, Wang R, et al. Association of p53/p21 expression and cigarette smoking with tumor progression and poor prognosis in non-small cell lung cancer patients. Oncology Reports. 2014 Dec 1;32(6):2517–26.

Thai AA, Solomon BJ, Sequist LV, Gainor JF, Heist RS. Lung cancer. Lancet. 2021 Aug 7;398(10299):535-554.

Xiao BD, Zhao YJ, Jia XY, Wu J, Wang YG, Huang F. Multifaceted p21 in carcinogenesis, stemness of tumor and tumor therapy. World J Stem Cells. 2020 Jun 26;12(6):481-487.

Pai JT, Hsu MW, Leu YL, Chang KT, Weng MS. Induction of G2/M Cell Cycle Arrest via p38/p21Waf1/Cip1-Dependent Signaling Pathway Activation by Bavachinin in Non-Small-Cell Lung Cancer Cells. Molecules. 2021;26(17):5161. Published 2021 Aug 25. doi:10.3390/molecules26175161

Shamloo B, Usluer S. P21 in cancer research. Vol. 11, Cancers. MDPI AG; 2019

Jones GS, Baldwin DR. Recent advances in the management of lung cancer. Clin Med (Lond). 2018;18(Suppl 2):s41-s46. doi:10.7861/clinmedicine.18-2-s41

Clark SB, Alsubait S. Non Small Cell Lung Cancer. [Updated 2021 Sep 9]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-.

Rudin CM, Brambilla E, Faivre-Finn C, Sage J. Small-cell lung cancer. Nat Rev Dis Primers. 2021;7(1):3. Published 2021 Jan 14. doi:10.1038/s41572-020-00235-0

Sabbula BR, Anjum F. Squamous Cell Lung Cancer. [Updated 2022 Jun 19]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK564510/?report=classic

Qian X, Hulit J, Suyama K, et al. p21CIP1 mediates reciprocal switching between proliferation and invasion during metastasis. Oncogene. 2013;32(18):2292-2303.e7. doi:10.1038/onc.2012.249

Sosa Iglesias V, Giuranno L, Dubois LJ, Theys J, Vooijs M. Drug Resistance in Non-Small Cell Lung Cancer: A Potential for NOTCH Targeting?. Front Oncol. 2018;8:267. Published 2018 Jul 24. doi:10.3389/fonc.2018.00267

Prabavathy D, Swarnalatha Y, Ramadoss N. Lung cancer stem cells-origin, characteristics and therapy. Stem Cell Investig. 2018 Mar 14;5:6. doi: 10.21037/sci.2018.02.01. PMID: 29682513; PMCID: PMC5897668.

Raniszewska A, Kwiecień I, Rutkowska E, Rzepecki P, Domagała-Kulawik J. Lung Cancer Stem Cells-Origin, Diagnostic Techniques and Perspective for Therapies. Cancers (Basel). 2021 Jun 15;13(12):2996. doi: 10.3390/cancers13122996. PMID: 34203877; PMCID: PMC8232709.

Lin JJ, Shaw AT. Resisting Resistance: Targeted Therapies in Lung Cancer. Trends Cancer. 2016 Jul;2(7):350-364. doi: 10.1016/j.trecan.2016.05.010. PMID: 27819059; PMCID: PMC5091655.

Teramen H, Tsukuda K, Tanaka N, Ueno T, et al. Aberrant methylation of p21 gene in lung cancer and malignant pleural mesothelioma. Acta Med Okayama. 2011 Jun;65(3):179-84. doi: 10.18926/AMO/46629. PMID: 21709715.

Tajima K, Matsuda S, Yae T, Drapkin BJ, et al. SETD1A protects from senescence through regulation of the mitotic gene expression program. Nat Commun. 2019 Jun 28;10(1):2854. doi: 10.1038/s41467-019-10786-w. PMID: 31253781; PMCID: PMC6599037.

Zhao YF, Wang CR, Wu YM, Ma SL, Ji Y, Lu YJ. P21 (waf1/cip1) is required for non-small cell lung cancer sensitive to Gefitinib treatment. Biomed Pharmacother. 2011;65:151–156.

Baldi A, De Luca A, Esposito V, Campioni M, et al. Tumor suppressors and cell-cycle proteins in lung cancer. Patholog Res Int. 2011;2011:605042. doi: 10.4061/2011/605042. Epub 2011 Oct 5. PMID: 22007345; PMCID: PMC3189597.

Niu, J., Gao, RQ., Cui, MT. et al. Suppression of TCAB1 expression induced cellular senescence by lessening proteasomal degradation of p21 in cancer cells. Cancer Cell Int21, 26 (2021). https://doi.org/10.1186/s12935-020-01745-3.

Gupta, S., Silveira, D. and Mombach, J., 2019. ATM/miR‐34a‐5p axis regulates a p21‐dependent senescence‐apoptosis switch in non‐small cell lung cancer: a Boolean model of G1/S checkpoint regulation. FEBS Letters 594. 2020: p.227-239. https://doi.org/10.1002/1873-3468.13615

Downloads

Published

2023-01-31

Issue

Section

Article Review

Similar Articles

1-10 of 168

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)