Differences in the Expression of miRNA-126 and Interleukin (IL)-13 in Fully Controlled and Not Fully Controlled Asthma Patients
Abstract
Methods: Case-control studies was conducted in 36 stable asthma patients who visited pulmonary outpatient clinic Saiful Anwar Hospital from September 2018 to March 2019. Subjects were divided into 2 groups, each group consisted of 18 fully controlled asthma and 18 not fully controlled asthma patients. The expression of miRNA-126 was measured by the quantitative polymerase chain reaction (q-PCR) and IL-13 using the enzyme-linked immunosorbent assay (ELISA) method.
Results: The expression of miRNA-126 was higher in the control group (3.499±2.99) than case group (2.719±2.73), but the difference was not significant (P=0.273). The IL-13 levels were higher in the case group (17.285±9.37) than control group (11.681±5.22), and the difference was significant (P=0.009). However, there was no relationship between the expression of miRNA-126 and IL-13 levels in both groups.
Conclusions: There were differences in IL-13 levels, but there were no differences in the expression of miRNA-126 in the two groups. There was no relationship between miRNA-126 expression and IL-13 levels in both groups. (J Respir Indo. 2020; 40(1): 24-32)
Keywords
Full Text:
PDFReferences
Ratnawati. 2011. Epidemiologi Asma. J Respir Indo. 2011;31:172-5.
Atmoko W, Khairina HPF, Bobian ET, Adisworo MW, Yunus F. Prevalensi Asma Tidak Terkontrol dan Faktor-Faktor yang Berhubungan dengan Tingkat Kontrol Asma di Poliklinik Asma Rumah Sakit Persahabatan, Jakarta. J Respir Indo. 2011;31:53-60.
Angulo M, Lecuona E, Sznajder JI. Role of MicroRNAs in lung disease. Arch Bronconeumol. 2012;48:325-30.
Greene CM, Gaughan KP. microRNAs in asthma: potential therapeutic targets. Curr Opin Pulm Med. 2013;19: 66–72.
Corren J. Role of Interleukin-13 in Asthma. Curr Allergy Asthma Rep. 2013;13:415-20.
Garbacki N, Di Valentin E, Huynh-Thu VA, Geurts P, Irrthum A, et al. MicroRNAs profiling in murine models of acute and chronic asthma: a relationship with mRNAs targets. PLoS One. 2011;6:1-23.
Kabesch M, Addock IM. Epigenetics in asthma and COPD. Biochimie. 2012;94:2231-41.
Collison A, Herbert C, Siegle JS, Mattes J, Foster PS, et al. Altered expression of microRNA in the airway wall in chronic asthma: miR-126 as a potential therapeutic target. BMC Pulm Med. 2011;11:29-34.
Suojalehto H, Lindström I, Majuri M, Mitts C, Karjalainen J, et al. Altered microRNA expression of nasal mucosa in long-term asthma and allergic rhinitis. Int Arch Allergy Immunol 2014;163:168–78.
Morris MJ. 2017. Asthma. [Internet]. https://emedicine.medscape.com/ article/296301-overview, diakses 20 Maret 2018.
Wang S. S. 2017. Metabolic Syndrome. [Internet]. https://emedicine.medscape.com/article/165124-overview, diakses 05 Mei 2019.
Amin M, Djajalaksana S, Wiyono WH, Yunus F, Suradi, et al. Asma; pedoman diagnosis dan penatalaksanaan di Indonesia, Edisi Revisi 1, 2018. Jakarta: Perhimpunan Dokter Paru Indonesia. p.30-6.
Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. Vancouver: GINA Board, 2017.
Rahayu, 2013. Hubungan tingkat kontrol asma dan kualitas hidup penderita asma yang berobat di RSUD Dokter Soedarso Pontianak pada bulan maret sampai dengan Mei tahun 2012. Jurnal Untan. 2013;3:1-17.
Yuliati D, Djajalaksana S, Al Rasyid H. Increasing level of interleukin-10, interleukin- 17 and ACT scoring in asthma bronchial patient with vitamin D deficiency after 2 months supplementation of 800 IU vitamin D. J Respir Indo. 2014;19:6.
Comberiati P, Cicco ME, D’Elios S, Peroni DG. How much asthma is atopic in children? Front Pediatr. 2017;5:122.
Price DB, Rigazio A, Campbell JD, Corrigan CJ, Thomas M, et al. Blood eosinophil count and prospective annual asthma
disease burden: a UK cohort study. 2015. Lancet Respir Med;3:849-58.
Kai W, Qian XU, Qun WZ. MicroRNAs and asthma regulation. Iran J Allergy Asthma Immunol. 2015;14:120-5.
Fallahi M, Keyhanmanesh R, Khamaneh AM, Saadatlou MAE, Saadat S, Ebrahimi H. Effect of Alpha-Hederin, the active constituent of Nigella sativa, on miRNA-126, IL-13 mRNA levels and inflammation of lungs in ovalbumin-sensitized male rats. Avicenna J Phytomed. 2016;6:77-85.
Surjanto E, Purnomo J. Mekanisme seluler dalam patogenesis asma dan rinitis. [Internet]. 2018. http://jurnalrespirologi.org/jurnal/Juli09/MEKANISME%20SELULER%20DALAM%20PATOGENESIS%20ASMA%20DAN%20RINITIS_OK.pdf, diakses 20 Maret 2018.
Oh CK, Geba GP, Molfino N. Investigational therapeutics targeting the IL-4/ IL-13/ STAT-6 pathway for the treatment of asthma. Eur Respir Rev. 2010;19:46-54.
Brightling CE, Chanez P, Leigh R, O’Byrne PM, Korn S, et al. Efficacy and safety of tralokinumab in patients with severe uncontrolled asthma: a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respir Med. 2015;3:692-701.
DOI: https://doi.org/10.36497/jri.v40i2.99
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Jurnal Respirologi Indonesia
INDEXING & PARTNER
Jurnal Respirologi Indonesia pISSN: 0853-7704 - eISSN: 2620-3162 Address: Jalan Cipinang Bunder No. 19, Cipinang, Pulogadung, Jakarta Timur, DKI Jakarta 13240, Indonesia Phone: +62-21-2247-4845 Email: editor@jurnalrespirologi.org | An official publication by the Indonesian Society of Respirology (ISR) |
Creative Commons Attribution-ShareAlike 4.0 International License Statcounter |