Correlation between Serum Adiponectin Levels and Forced Expiratory Volume in 1 Second (FEV1) Scores in Asthmatic Patients

Mulyadi Subarjo, Muhammad Amin

Abstract


Background: The adipokine is a group of protein secreted from the adipose tissues, producing among other the anti-inflammatory adiponectin. Serum adiponectin concentration decreases at asthma and has reverse correlation with the worse prognosis. Adiponectin correlation with asthmatic patients currently is still a controversy, though adiponectin and its receptor are expressed within the cells of airway. The purpose of this research is to verify the correlation between adipokine, especially the role of the adiponectin in influencing airway obstruction degree measured under FEV1 scores in asthmatic patients.
Methods: Observational analytical research with cross section design in Policlinic of Asthma/PPOK Regional General Hospital of Dr. Soetomo Surabaya from March to April 2018 was conducted to 40 qualified inclusion and exclusion asthmatic patients as the research samples. There were spirometry and venous blood tests to measure the FEV scores and the serum adiponectin levels respectively, using the Sandwich Enzyme Linked Immuno Sorbent Assay (ELISA) method.
Results: No significant correlation between FEV towards adiponectin levels (r = 0,174; 95% CI = -0,145 – 0,461; P = 0,283). No significant ratio different between FEV1 scores towards adiponectin group (P = 0,885). The highest FEV1 average was found on the lower adiponectin group. No significant different between serum adiponectin levels on the mild / moderate / severe obstruction degree groups (P = 0,259). The highest serum adiponectin levels in obstruction degree groups (ADP = 57,08 ng/ml) was found in the mild, followed with the moderate (ADP = 49,72 ng/ml), and severe groups (ADP = 45,58 ng/ml).
Conclusion: No significant correlation between FEV1scores and serum adiponectin levels in asthmatic patients. But there was parallel correlation trend, such as the decrease of serum adiponectin levels, and of the FEV scores, though it was insignificant. (J Respir Indo 2019; 39(2): 113-20)

Keywords


asthma; adiponectin; FEV

Full Text:

PDF

References


Fanta, C.H. Asthma. N. Engl. J. Med. 2009; 360:1002-14.

Kupczyk M, Ten Brinke A, Sterk PJ, Be EH, Papi A, Chanez P, et al. BIOAIR investigators. Asthma phenotypes based on clinical characteristics include age at onset, exercise-induced, smoking-related, exacerbation-prone and obesity-related. Frequent exacerbators-a distinct phenotype of severe asthma. Clin. Exp. Allergy. 2014;44(2):212-21.

Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. Global Initiative for Asthma. 2017; Available from: http://www.ginasthma.org

Global Initiative for Asthma: Appendix. Global Strategy for Asthma Management and Prevention. Global Initiative for Asthma. Appendix. 2017; Available from: http://www.ginasthma.org/2017- online-appendix

Depkes RI. Riset Kesehatan Dasar. RISKESDAS 2013. Jakarta: Departemen Kesehatan, Republik Indonesia, 2013.

Fryer AA, Bianco A, Hepple M, Jones PW, Strange RC, Spiteri MA. Polymorphism at the glutathione S-transferase GSTP1 locus. A new marker for bronchial hyperresponsiveness and asthma. Am. J. Respir. Crit. Care Med. 2000;161(5):1437-42.

Lloyd CM, Robinson DS. Allergen-induced airway remodelling. Eur. Respir. J. 2007;29(5):1020-32.

Shore SA. Obesity and asthma: lessons from animal models. J Appl Physiol. 2007;102:516–28.

Shore SA. Obesity and asthma: implications for treatment. Curr Opin Pulm Med. 2007; 13:56–62.

Shore SA, Terry RD, Flynt L, Aimin Xu, Hug C. Adiponectin attenuates allergen-induced airwayinflammation and hyperresponsiveness in mice. J Allergy Clin Immunol. 2006;118:389–95.

Wulster-Radcliffe MC, Ajuwon KM, Wang J, Christian JA, Spurlock ME. Adiponectin differentially regulates cytokines in porcine macrophages. Biochem Biophys Res Commun.

;316(3):924–29.

Nigro E, Scudiero O, Monaco ML, Palmieri A, Mazzarella G, Costagliola C et al. A. New Insight into Adiponektin Role in Obesity and Obesity-Related Diseases. Biomed. Res. Int.

;2014:1-14.

Assad NA, Sood A. Leptin, adiponektin and pulmonary diseases. Biochimie 2012; 94(10):2180-9.

Nigro E, Daniele A, Scudiero O, Monaco ML, Roviezzo F, D’Agustino B et al. Adiponectin in Asthma: Implications for Phenotyping. Curr Protein Pept Sc. 2015;16:18-187.

MedoffBD,OkamotoY,LeytonP,WengM,Sandall BP, Raher MJ et al. Adiponectin Deficiency Increases Allergic Airway Inflammation and Pulmonary Vascular Remodelling. Am J Respir Cell Mol Biol. 2009;41(4):397-406.

Ilyas M, Yunus F, Wiyono WH. Correlation between asthma control test (ACT) and spirometry as tool of assessing controlled asthma. J Respir Indo. 2010;30(4):190-6.

Ramlie A, Soemarwoto RA, Wiyono WH. Korelasi antara asthma control test dengan VEP1% dalam menentukan tingkat kontrol asma. J Respir Indo. 2014;34(2):95-101.

Widysanto A. Korelasi penilaian asma terkontrol pada penderita asma persisten sesudah pemberian kortikosteroid inhalasi dengan menggunakan asthma control scoring system (ACSS) dan asthma contol test (ACT). [Tesis]. Jakarta: Universitas Indonesia: 2006

Putra DP. Hubungan antara kadar koenzim Q dan inhalasi steroid jangka waktu lama pada 10 penderita asma bronkial. [Tesis]. Surabaya: Universitas Airlangga:2017

Viengchareun S, Zennaro MC, Pascual-Le Tallec L, Lombes M. Brown adipocytes are novel sites of expression and regulation of adiponectin and resistin. FEBS Lett 2002; 532(3):345-50

Yokota T, Oritani K, Takahashi I, Ishikawa J, Matsuyama A, Ouchi N, et al. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood 2000; 96(5):1723-32

Wolf AM, Wolf D, Rumpold H, Enrich B, Tilg H. Adiponectin induces the anti-inflammatory cytokines IL10 and IL-1RA in human leukocytes. Biochem Bioph Res Co. 2004; 323(2):630-5

Baek HS, Kim YD, Shin JH, Kim JH, Oh JW, Lee HB. Serum leptin and adiponectin levels correlate with exercise-induced bronchoconstriction in chil- dren with asthma. Ann Allergy Asthma Immunol 2011;107(1):14-21

Sood A, Qualls C, Seagrave J, Stidley C, Archibeque T, Berwick M, et al. Effect of specific allergen inhalation on serum adiponectin in human asthma. Chest. 2009; 135(2):287–94

Shore SA. Obesity and asthma: Possible mechanisms. J Allergy Clin Immun. 2008;121(5):1087-93

Lugogo NL, Kraft M, Dixon AE. Does obesity produce distinct asthma phenotype? J. Appl Physiol. 2009;108(3): 729–734

Ouchi N, Kihara S, Arita Maeda K. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponektin. Circ 1999;100(25):2473–6

Peters-Golden M, Swern A, Bird SS, Hustad CM, Grant E, Edelman JM. Influence of body mass index on the response to asthma controller agents. Eur Respir J 2006;27:495-503

Barnes PJ, Loscalzo J, Longo DL, Kasper DL, Jameson JL, Fauci AS et al. Harrison’s Pulmonary and Critical Care Medicine, America: Mc GrawHill. 2013; p:66-84

Dixon AE, Holguin F, Sood A, Salome CM, Pratley RE, Beuther DA, et al. An Official American Thoracic Society workshop report: Obesity and asthma. Proc Am Thorac Soc. 2010;7(5):325-35

Papizan, James B. Phosporylation of Fetuin A. Physiological inhibitor of Insulin Action, Regulated by Insulin and Leptin. Alabama: Program Pascaasarjana Universitas Auburn




DOI: https://doi.org/10.36497/jri.v39i2.49

Refbacks

  • There are currently no refbacks.





Jurnal Respirologi Indonesia
pISSN: 0853-7704 - eISSN: 2620-3162
Address: Jalan Cipinang Bunder No. 19, Cipinang, Pulogadung, Jakarta Timur, DKI Jakarta 13240, Indonesia
Phone: +62-21-2247-4845
Email: editor@jurnalrespirologi.org


An official publication by
the Indonesian Society of Respirology (ISR)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Statcounter